Mode of crustal extension determined by rheological layering

نویسندگان

  • Chris Wijns
  • Roberto Weinberg
  • Klaus Gessner
  • Louis Moresi
چکیده

The results of numerical modelling show that the mechanical stratification of the crust provides the fundamental control on fault spacing and, ultimately, the mode of extension. Macroscopic pre-existing structures and weaknesses are often thought to govern the behaviour of continental crust under extension, and many prior studies have focussed on the effect of heterogeneities in triggering faulting and exhumation of lower crustal material. The role played by such features is in fact subordinate to that exerted by the rheological contrast from upper to lower crust. In our numerical model, the temperature gradient dictates the transition from a strong, brittle, upper crust to a weaker, ductile, lower crust. We see two distinct extension modes that depend on this vertical rheological contrast: the distributed faulting mode and the metamorphic core complex mode. The ratio of the integrated strength of the upper to lower crust is an indicator of the resulting mode of extension. When this strength ratio is small, i.e., the lower crust is relatively strong, the result is distributed, densely spaced faulting, with limited slip on each fault, and no exposure of lower crustal rocks. An example could be faulting in the North Sea. A large strength ratio, hence a weak lower crust that flows easily, leads to stretching being strongly localised onto relatively few normal fault zones. Each fault accommodates large displacements, eventually dissecting the upper crust and resulting in exhumation of the lower crust. This is representative of the metamorphic core complexes of the western U.S.A. and the Aegean. The actual critical strength ratio for the transition between modes will depend upon secondary factors such as the relative thickness of the lower crust with respect to the upper crust and the degree of fault weakening. D 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling mountain building, numerical trade off between erosion law and crustal rheology

Coupling between erosion and tectonics are thought to play a determinant role in mountains evolution. Here, we investigate the interplay in this coupling between the assumed erosion law and the crustal rhe-ology at the margin of a collisional plateau, like the Himalaya of central Nepal. Lithospheric deformation is calculated over a time scale of 100 kyr by a two-dimensional finite elements mode...

متن کامل

Mode of lithospheric extension: Conceptual models from analogue modeling

[1] Comparison of analogue experiments at crustal and lithospheric scale provides essential information concerning the mode of deformation during lithospheric extension. This study shows that during extension, lithospheric deformation is controlled by the development of shear zones in the ductile parts. At lithospheric scale, the global deformation is initiated by the rupture of the brittle man...

متن کامل

Rheological decoupling at the Moho and implication to Venusian tectonics

Plate tectonics is largely responsible for material and heat circulation in Earth, but for unknown reasons it does not exist on Venus. The strength of planetary materials is a key control on plate tectonics because physical properties, such as temperature, pressure, stress, and chemical composition, result in strong rheological layering and convection in planetary interiors. Our deformation exp...

متن کامل

Short Note Frequency-Dependent Crustal Correction for Finite-Frequency Seismic Tomography

Removing the crustal signature from teleseismic travel times is an important procedure to reduce the trade-off between crustal and mantle velocity heterogeneities in seismic tomography. Because reverberations of longand short-period body-wave arrivals in the crust affect the waveforms of the direct arrivals differently, the crustal effects on travel times measured by waveform cross correlation ...

متن کامل

Control of rheological stratification on rifting geometry: a symmetric model resolving the upper plate paradox

Numerical experiments reproduce the fundamental architecture of magma-poor rifted margins such as the Iberian or Alpine margins if the lithosphere has a weak mid-crustal channel on top of strong lower crust and a horizontal thermal weakness in the rift center. During model extension, the upper crust undergoes distributed collapse into the rift center where the thermally weakened portion of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005